Course Template

[vc_row height=”auto” bg_type=”grad” bg_grad=”background: -webkit-gradient(linear, left top, left bottom, color-stop(46%, #FFFFFF), color-stop(46%, #F2F2F2), color-stop(99%, #F2F2F2));background: -moz-linear-gradient(17deg,#FFFFFF 46%,#F2F2F2 46%,#F2F2F2 99%);background: -webkit-linear-gradient(17deg,#FFFFFF 46%,#F2F2F2 46%,#F2F2F2 99%);background: -o-linear-gradient(17deg,#FFFFFF 46%,#F2F2F2 46%,#F2F2F2 99%);background: -ms-linear-gradient(17deg,#FFFFFF 46%,#F2F2F2 46%,#F2F2F2 99%);background: linear-gradient(17deg,#FFFFFF 46%,#F2F2F2 46%,#F2F2F2 99%);” css=”.vc_custom_1512081277387{padding-top: 150px !important;padding-bottom: 0px !important;}”][vc_column][vc_row_inner][vc_column_inner][ultimate_heading main_heading=”Course Name” heading_tag=”h1″ alignment=”left” main_heading_font_family=”font_family:Nunito|font_call:Nunito|variant:600″ main_heading_style=”font-weight:600;” margin_design_tab_text=””][/ultimate_heading][ultimate_spacer height=”15″][/vc_column_inner][/vc_row_inner][vc_row_inner content_placement=”middle”][vc_column_inner width=”1/2″][vc_column_text]

Course Overview

Our Predictive Analytics using R course is designed to give participants hands-on experience with building predictive models as well as the skills to identify potential application areas in their organisations.

Course Design Focuses on Practical Data Science

Apart from teaching participants predictive modelling, this course focuses on imparting a solid understanding of how to introduce data science into a business environment. This includes things such as gaining buy-in from management and developing organizational capabilities in data science and predictive analytics. The skills learnt will enable participants to help build a data science capability in their organisations in a low-cost, lean manner, using industry standard technologies.

Includes Practical Exercises

Harness the power of machine learning to build predictive models using R. Theory will be supplemented by practical exercises covering diverse domains.

[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/2″ css=”.vc_custom_1511657384250{background-position: 0 0 !important;background-repeat: no-repeat !important;}”][us_image image=”230″ size=”full” align=”center”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row bg_type=”grad” bg_grad=”background: -webkit-gradient(linear, left top, left bottom, color-stop(35%, #FFFFFF), color-stop(35%, #F2F2F2), color-stop(100%, #F2F2F2));background: -moz-linear-gradient(166deg,#FFFFFF 35%,#F2F2F2 35%,#F2F2F2 100%);background: -webkit-linear-gradient(166deg,#FFFFFF 35%,#F2F2F2 35%,#F2F2F2 100%);background: -o-linear-gradient(166deg,#FFFFFF 35%,#F2F2F2 35%,#F2F2F2 100%);background: -ms-linear-gradient(166deg,#FFFFFF 35%,#F2F2F2 35%,#F2F2F2 100%);background: linear-gradient(166deg,#FFFFFF 35%,#F2F2F2 35%,#F2F2F2 100%);”][vc_column][vc_row_inner][vc_column_inner offset=”vc_col-md-offset-1 vc_col-md-10″][ultimate_heading main_heading=”How Does This Course Benefit You?” main_heading_color=”#2b479c” sub_heading_margin=”margin-bottom:30px;”][/ultimate_heading][/vc_column_inner][/vc_row_inner][ultimate_spacer height=”60″][vc_row_inner gap=”5″][vc_column_inner width=”1/3″][bsf-info-box icon_type=”custom” icon_img=”id^236|url^https://sensanalytics.files.wordpress.com/2023/03/d92be-service-1-1.png|caption^null|alt^null|title^Service-1|description^null” img_width=”120″ hover_effect=”style_3″ pos=”top”]Learn to build predictive models from scratch using an open source language R which isbecoming one of the most popular languages for building data science applications inindustry.[/bsf-info-box][/vc_column_inner][vc_column_inner width=”1/3″][bsf-info-box icon_type=”custom” icon_img=”id^132|url^https://sensanalytics.files.wordpress.com/2023/03/3e5b6-service-6.png|caption^null|alt^null|title^Service-6|description^null” img_width=”120″ hover_effect=”style_3″ pos=”top”]Gain an understanding of the best practice frameworks and processes that shape the predictive data analytics life cycle from beginning to deployment into production.[/bsf-info-box][/vc_column_inner][vc_column_inner width=”1/3″][bsf-info-box icon_type=”custom” icon_img=”id^131|url^https://sensanalytics.files.wordpress.com/2023/03/fba22-service-5.png|caption^null|alt^null|title^Service-5|description^null” img_width=”120″ hover_effect=”style_3″ pos=”top”]Understand how organizations are using analytics in various domains as well as the benefits they are gaining from this.[/bsf-info-box][/vc_column_inner][/vc_row_inner][ultimate_spacer height=”60″][ultimate_heading main_heading=”1-2 Day Courses” sub_heading_margin=”margin-bottom:30px;” main_heading_font_family=”font_family:Nunito|font_call:Nunito” sub_heading_font_family=”font_family:Nunito|font_call:Nunito”]

Cover the Basics

[/ultimate_heading][ultimate_spacer height=”30″][vc_row_inner][vc_column_inner width=”1/3″ css=”.vc_custom_1512081615559{border-left-width: 1px !important;border-left-color: #cccccc !important;border-left-style: solid !important;}”][vc_column_text css=”.vc_custom_1512081751254{padding-top: 15px !important;padding-bottom: 15px !important;padding-left: 20px !important;background-color: #2b479c !important;}”]

Day 1

[/vc_column_text][ultimate_spacer height=”30″][bsf-info-box icon_type=”custom” icon_img=”id^34|url^https://sensanalytics.files.wordpress.com/2023/03/82992-bulb.png|caption^null|alt^null|title^Bulb|description^null” img_width=”32″ title=”Introduction”]

  • Overview of the workshop
  • What is predictive analytics? How does it differ from“traditional analytics”?
  • What is machine learning?
  • Historical context and applications
  • Introduction to machine learning
    • Supervised and unsupervised learning
    •  Classification and regression
    • The process of machine learning (what does it mean to build a predictive model from data)
    • Training vs test-Simplicity vs flexibility
    • Bias variance tradeoff and regularisation-Evaluating model accuracy

[/bsf-info-box][/vc_column_inner][vc_column_inner width=”1/3″][ultimate_spacer height=”114″ height_on_mob_landscape=”10″ height_on_mob=”10″][bsf-info-box icon_type=”custom” icon_img=”id^34|url^https://sensanalytics.files.wordpress.com/2023/03/82992-bulb.png|caption^null|alt^null|title^Bulb|description^null” img_width=”32″ title=”R for data science”]

  • The R environment
    • RStudio
  • Basic commands and libraries
    • installing and calling
  • Simple computations and datatypes
  • Scalars, vectors and lists
  • Data frames
  • Tidydata and the tidyverse
  • Plotting data using ggplot
  • Data wrangling using dplyr
  • String manipulation
  • Dates

[/bsf-info-box][/vc_column_inner][vc_column_inner width=”1/3″ css=”.vc_custom_1512081834958{border-left-width: 1px !important;border-left-color: #cccccc !important;border-left-style: solid !important;}”][vc_column_text css=”.vc_custom_1512081845555{padding-top: 15px !important;padding-bottom: 15px !important;padding-left: 20px !important;background-color: #2b479c !important;}”]

Day 2

[/vc_column_text][ultimate_spacer height=”30″][bsf-info-box icon_type=”custom” icon_img=”id^34|url^https://sensanalytics.files.wordpress.com/2023/03/82992-bulb.png|caption^null|alt^null|title^Bulb|description^null” img_width=”32″ title=”Building Predictive Models”]

Linear predictive models
  • Linear regression
  • Logistic regression
  • Ridge and Lasso regularization
Tree based Models
  • Decision trees
  • Random forest
  • Gradient boosted trees
Other Algorithms
  • Support vector machines
  • Naive Bayes
  • Clustering and dimensionality reduction

[/bsf-info-box][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row bg_type=”grad” bg_grad=”background: url();background: -webkit-gradient(linear, left top, left bottom, color-stop(51%, #FFFFFF), color-stop(52%, #FFFFFF), color-stop(52%, #F2F2F2), color-stop(100%, #F2F2F2));background: -moz-linear-gradient(17deg,#FFFFFF 51%,#FFFFFF 52%,#F2F2F2 52%,#F2F2F2 100%);background: -webkit-linear-gradient(17deg,#FFFFFF 51%,#FFFFFF 52%,#F2F2F2 52%,#F2F2F2 100%);background: -o-linear-gradient(17deg,#FFFFFF 51%,#FFFFFF 52%,#F2F2F2 52%,#F2F2F2 100%);background: -ms-linear-gradient(17deg,#FFFFFF 51%,#FFFFFF 52%,#F2F2F2 52%,#F2F2F2 100%);background: linear-gradient(17deg,#FFFFFF 51%,#FFFFFF 52%,#F2F2F2 52%,#F2F2F2 100%);”][vc_column][ultimate_heading main_heading=”Three Day Courses” sub_heading_margin=”margin-bottom:30px;” main_heading_font_family=”font_family:Nunito|font_call:Nunito” sub_heading_font_family=”font_family:Nunito|font_call:Nunito”]

An internal hackathon

[/ultimate_heading][ultimate_spacer height=”30″][vc_row_inner content_placement=”middle”][vc_column_inner width=”1/2″][vc_column_text]Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt.[/vc_column_text][ultimate_spacer height=”15″][ult_buttons btn_title=”Register” btn_size=”ubtn-large” btn_title_color=”#ffffff” btn_bg_color=”#2b479c” btn_bg_color_hover=”#2b479c” btn_title_color_hover=”#ffffff” icon=”Defaults-envelope-o” icon_size=”20″ btn_icon_pos=”ubtn-sep-icon-right-push” btn_border_style=”solid” btn_color_border=”#2b479c” btn_color_border_hover=”#2b479c” btn_border_size=”2″ btn_radius=”50″ btn_font_family=”font_family:Nunito|font_call:Nunito|variant:600″ btn_font_style=”font-weight:600;”][/vc_column_inner][vc_column_inner width=”1/2″][us_image image=”69″ size=”full” align=”center”][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row]

%d bloggers like this: